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Abstract—In general, augmented reality (AR) applications use
polygonal models to augment a real scene. However, most of
the medical applications have volumetric data to be visualized.
Therefore, it is desirable to the medical AR systems to provide
the visualization of these volumes into the real scene in real-time.

In this paper we introduce a real-time semi-automatic ap-
proach for on-patient medical volume data visualization. It is
proposed in a markerless augmented reality (MAR) environment
and the medical data consists of a volume reconstructed from 3D
computed tomography (CT) image data. A 3D reference model
of the region of interest in the patient is generated and tracked
from the Kinect depth stream. From the estimated camera pose,
a volumetric medical data can be displayed to a physician inside
the patient’s anatomy at the location of the real anatomy.

We evaluate the use of the named standard volume rendering
techniques in the context of a MAR environment. The results
obtained so far show that these techniques can be applied in this
scenario in real-time.

Index Terms—Augmented Reality; Volume Rendering; Mark-
erless Registration;

I. INTRODUCTION

Augmented Reality (AR) is a technology in which the
view of a real scene is augmented with additional virtual
information. Accurate tracking, or camera pose estimation,
is not only one of the fundamental requirements for the
registration of virtual objects, but also is one of the most
important technical challenges of AR systems.

Typically, patient’s anatomical structures are shown on mon-
itors and based on 2D images, corresponding to slices of the
3D data. In this case, the physician has to mentally compose
what is shown on the screen to the patient. AR takes over
this task of mental mapping by transferring it to a computer
system. Therefore, the physician is able to visualize, at the
same time, the patient and a part of his own anatomy in the
display. This issue is addressed by some medical augmented
reality systems, such as those presented in [1], [2], [3] and [4].
In general, these systems aim to improve medical diagnosis,
surgical operation and/or post-operative examination.

AR applications can be divided into two basic groups:
marker-based or markerless. Marker-based AR uses fiducial

markers as a point of reference in the field of view to help
the system to estimate the camera pose. These markers need
to exist in the real world to be tracked by the application.
Markerless AR (MAR) uses a part of the real scene as the
marker. Tracking becomes more complex in MAR. However,
because artificial markers are not part of the original scene,
MAR is desirable in several AR application scenarios.

Most of the medical AR systems use bulky equipment such
as optical tracking systems based on markers to help in the
tracking of the 3D medical data. While they give accuracy
in the tracking and positioning of the virtual medical data
in the patient, in some applications these markers can be
intrusive and the hardware too expensive. To solve these issues,
markerless tracking can be implemented taking advantage
from the visual features of the scene, such as texture or
geometry of the object of interest to be tracked. Currently,
the high computational power of hardware, mostly based on
parallel computing, like GPUs, allied to low-cost capture
devices, allows this solution to be used with enough accuracy
and in real-time.

In general, AR applications use polygonal models to aug-
ment a real scene. However, medical data is typically rep-
resented by volumetric models. Therefore, it is desirable to
a medical AR system to provide the visualization of these
volumetric data into the AR environment in real-time.

This paper presents a semi-automatic markerless augmented
reality approach for on-patient medical volume data visualiza-
tion based on a low-cost depth sensor available in the Kinect
device [5]. First, a 3D reference model of the region of interest
in the patient is generated. Next, the user positions the virtual
object (i.e. medical data) into the reference model. Afterwards,
the Kinect raw data is aligned to the 3D reference model,
predicting the current camera pose. From the estimated camera
pose, a volumetric medical data can be displayed to a physician
at the location of the real anatomy. The volume visualization
is performed by the standard volume rendering techniques
[27]. Finally, to improve the visual perception and interaction
between the real (i.e. patient’s image) and virtual objects,



our approach supports occlusion handling and blending at the
shader level by using depth and color buffers. The final result
is shown in the physician’s monitor.

Our approach is evaluated in a scenario where the patient’s
head is augmented with a CT volumetric dataset of a head.
The Viola-Jones face detector [6] is used to locate the patient’s
face in the whole image. The KinectFusion [7] algorithm is
used to reconstruct the 3D reference model of the patient’s
face and the Iterative Closest Point (ICP) is used to track it.
Taking advantage from this scenario, we further improve the
robustness of the tracking step by using the face tracking so-
lution proposed in [8]. Our main contribution is the evaluation
of the applicability of standard volume rendering techniques
in a MAR environment in real-time.

The rest of the paper is arranged as follows. Section 2
provides a review on the related work of Medical Augmented
Reality systems. Section 3 presents the proposed approach.
Section 4 introduces the volume rendering techniques used
in this work. Section 5 discusses the experimental results.
The paper is concluded in Section 6, with a summary and
discussion of future work.

II. RELATED WORK

Medical augmented reality systems for on-patient visualiza-
tion have been driven by different approaches in recent years.

Kutter et al. [9] proposed a marker-based method for
real-time high quality on-patient visualization of volumetric
medical data on a Head Mounted Display (HMD). Their work
focuses on efficient implementations for high quality volume
rendering in an augmented reality environment. They also
provide occlusion handling for physician hands. An improved
version of this work was proposed by Wieczorek et al. [10]
to handle with occlusions due to medical instruments as well.
Also, they included additional effects in the system, such as
virtual mirror and multi-planar reformations.

Debarba et al. [11] proposed a method to visualize anatomic
hepatectomy (i.e. anatomic liver resections) in an AR en-
vironment. The use of a fiducial marker made possible the
positioning and tracking of the medical data in the scene. A
mobile device was used to allow the visualization of internal
structures of the patient’s body.

Lee et al. [12] proposed a markerless registration framework
for a medical augmented reality system. They use three
cameras: two of them are mounted to form a stereo vision
system and reconstruct the patient’s head; the other camera is
used to capture the images of the patient in real-time. In a pre-
processing step, a surface is reconstructed from the CT and a
variant of the ICP algorithm is used to do the image-to-patient
registration. The estimation of the third camera’s pose is done
by using a fiducial marker.

Suenaga et al. [13] proposed a method for on-patient visual-
ization of maxillofacial regions. A 3D optical tracking system
and a fiducial marker are used to track the patient. A semi-
transparent display is placed in front of the mouth region of
the patient. The display shows the maxillofacial medical data.
This method runs in 5 FPS (frames per second).

Different from the previous approaches, Maier-Hein et al.
[4] proposed a method for markerless mobile augmented
reality for on-patient visualization of medical images. They
proposed a system in which a Time-of-Flight (ToF) camera
is mounted on a mobile and portable device (e.g. tablet PC,
iPad) and the physician might move the portable device along
the body of the patient to see his anatomical information. To
estimate the camera pose, they use a graph matching procedure
[14] and a anisotropic variant of the ICP algorithm [15] to
align the surfaces continuosly captured by the ToF camera.
This method runs in 10 FPS.

In the field of anatomy education, Blum et al. [16] proposed
the mirracle, a magic mirror for teaching anatomy. They
used a display device and a Kinect sensor to allow volume
visualization of a CT dataset augmented onto the user. To track
the pose of the user, they used the NITE skeleton tracking [17].
As the system is for educational purposes, they could use a
generic CT volume which was scaled to the size of the user
and augmented onto him.

Most of the approaches described in this section share the
same drawback: they use markers to help in the calibration,
positioning and tracking of the objects in the scene. The use of
fiducial markers provides fast and accurate tracking. However,
these markers are still intrusive, because they are not part
of the original scene. Moreover, the hardware of the optical
tracking system in some applications is too expensive. The
approach that does not use these marker-based hardware (i.e.
[4]), does not obtain real-time performance in its application
because of the computational cost of the markerless tracking
in conjunction with the volume rendering techniques used.
One exception of this is the mirracle system described be-
fore. However, the main drawback of the fast NITE skeleton
tracking is that it does not track accurately some parts of the
body, such as head. Different from them, our approach based
on a markerless tracking runs entirely in real-time with low-
cost hardware components. Moreover, the solution proposed
in this paper is general in the sense that can track any part of
the body with enough accuracy.

III. ON-PATIENT VOLUMETRIC MEDICAL DATA
VISUALIZATION

In this section we describe the MAR environment in which
this work was based on. An overview of this environment with
support to volumetric data can be seen in Figure 1.

A. Environment setup

The proposed approach is based on an RGB-D sensor and
a computer with GPU, therefore being accessible to any user.
The Kinect [5] is used as RGB-D sensor to capture the pa-
tient’s color and depth information. The real-time performance
is achieved by using the parallel processing power of the GPU
in all critical algorithms.



Fig. 1. Overview of the processing pipeline. A) RGB-D live stream. B) A face detector is used to locate and segment the face from the rest of the scene.
C) 3D Reference model is reconstructed with KinectFusion. D) The 3D reconstruction is stopped, the volume is rendered and the user positions the virtual
object into the scene. E) MAR tracking is done based on the 3D reference model. F) Our approach supports occlusion.

B. Vertex and Normal Maps Generation

In this section we describe the algorithms that are used for
every input frame to generate the vertex map1 and the normal
map2, with the exception of the face segmentation, which is
only performed during the reconstruction stage. All of these
algorithms run on the GPU.

As mentioned before, the Kinect has two sensors that
capture color and depth information of the scene (Figure 1-A).
Therefore, we calibrate the Kinect sensors to enable a mapping
between them.

In order to segment the face from the scene, we apply the
Viola-Jones face detector [6] implemented in GPU to locate
and segment the face in the color image (Figure 1-B). As
long as the face is segmented, its location can be transposed
to the depth image by using the extrinsic parameters from the
calibration step. Doing so, we achieve a more restricted area
of the depth map to be used through the other steps of our
approach.

The depth map is denoised using a bilateral filter [18] that
preserves discontinuities of the raw depth map. We segment
the depth of the background scene by applying a Z-axis
threshold on the filtered depth map. This threshold is defined
semi-automatically.

The filtered depth map is then converted into a vertex map
and a normal map. The vertex map is constructed by the prod-
uct between the filtered depth map and the Kinect IR camera’s
intrinsic calibration matrix. The normal map is constructed by
computing the eigenvector of smallest eigenvalue of the local
covariance matrix computed for every vertex. This technique
produces normal maps with less error than the traditional
approaches based on neighboring points for normal estimation
[19].

C. 3D Reference Model Reconstruction

With the real object properly segmented, we need to track it
through the Kinect live stream (whose algorithm is described
in the Section III-D) and to integrate the different viewpoints
acquired from the scene into a single reference model.

1Point cloud.
2In this paper, we refer to normal map as an array which stores the normal

vector for each vertex in the vertex map.

The KinectFusion algorithm [7] is used in this context to
reconstruct a 3D reference model in real-time (Figure 1-C).
The algorithm integrates raw depth data from a Kinect into a
volumetric grid to produce a high-quality 3D reconstruction
of a scene. The grid stores at each voxel the distance to
the closest surface (i.e. Signed Distance Function - SDF)
[20] and a weight that indicates uncertainty of the surface
measurement. The SDF values are positive in-front of the
surface, negative behind and zero-crossing where the sign
changes. In the KinectFusion, the SDF is only stored in a
narrow region around the surface, in other words, a truncated
SDF (TSDF). These volumetric representation and integration
are based on the VRIP algorithm [21]. Surface extraction
is achieved by detecting zero-crossings through a ray caster.
All these operations run on the GPU. As shown in [22], the
KinectFusion algorithm has accuracy of 10mm and so on we
assume that its reconstructed models are adequate to be used
as reference for registration in AR applications.

The 3D reference model reconstruction is done only one
time and it is the basis for the MAR live tracking. The
reconstruction is stopped semi-automatically and the user
can position the medical data (Figure 1-D) into the scene.
Afterwards, the MAR tracking can be started.

D. Live Tracking

The live tracking is done in two steps: during the reconstruc-
tion of the 3D reference model and during the MAR with the
patient and the medical data (Figure 1-E). Instead of using
an image-based tracking, we use a real-time variant of the
Iterative Closest Point (ICP) [23], [24]. As done in [25], we
choose a depth-based method because it does not suffer from
changes in illumination or the presence of textureless regions
in the scene. The ICP is used to estimate the transformation
that aligns the current depth frame with the previous one
represented by the 3D reference model.

In presence of fast rotations and translations in the scene, the
real-time variant of the ICP algorithm may fail. To minimize
this problem, a real-time head pose estimation algorithm is
used to give a new initial guess to the ICP to compute correctly
the current transformation [8]. The head pose estimation
used is the algorithm proposed by Fanelli et al. [26]. This



probabilistic approach achieves high accuracy and runs in real-
time even running in CPU.

After the computation of the rigid transformation, it is
applied to the medical data, which can be composed with the
real scene captured by the Kinect.

IV. VOLUME RENDERING

Volume rendering is concerned with techniques for gener-
ating images from volume data [27].

The majority of volume rendering algorithms are based on
the volume rendering integral. This formulation is based on a
emission-absorption optical model as shown in Equation 1.

I(D) = I0e
−
∫ D

s0
k(t)dt

+

∫ D

s0

q(s)e
−
∫ D

s
k(t)dt

ds. (1)

The radiance energy I(D) is the result of integrating from
entry point into the volume (s = s0) to the exit point toward
the camera (s = D). The absorbed energy and emission
components are represented by the absorption and emission
coefficients k and q respectively. The term I0 is the radiance
in the entry point s0.

The volume is rendered according to a compositing scheme,
which gives the numerical computation of the volume render-
ing integral:

I(D) =

n∑
i=0

ci

n∏
j=i+1

Tj (2)

where ci = I(si) and Ti = T(si−1, si) = e
−
∫ si

si−1
k(t)dt

.
Two of the most known compositing schemes are the

direct volume rendering (DVR) and the maximum intensity
projection (MIP). The DVR is the discretization presented in
the Equation 2 and it is based on a front-to-back or back-
to-front compositing. The most common is the front-to-back
DVR:

Cdst = Cdst + (1− σdst)Csrc (3)

σdst = σdst + (1− σdst)σsrc (4)

where Cdst = ci+1, Csrc = ci, σdst = 1 − Ti+1, σsrc =
σi given the voxel i being traversed. C represents the color
contribution and σ the opacity of the voxel.

Different from the DVR compositing scheme, MIP is com-
puted according to the following compositing equation:

Cdst = max(Cdst, Csrc) (5)

The final result is the maximum color contribution along a
ray [27]. This compositing scheme is particularly important in
the virtual angiography (i.e. the display of the vessel structures
in medical scans) [28].

The volume data is represented as a 3D texture with
associated colors. This representation allows the generation of
images with higher quality than the 2D texture-based solution
[27]. To render the medical data based on DVR or MIP

compositing scheme, the ray casting technique is used. The
start positions of the ray are obtained by rasterizing the front
faces of the volume bounding box and the exit positions of the
ray are obtained by rasterizing the back faces of the bounding
box. Direction is computed from the difference between the
exit and start positions. Ray casting is performed by sampling
the space in-between the volume bounding box by using an
adaptive sampling rate (which is discussed below). Ray casting
is done on GPU in a single rendering pass on the fragment
shader [29].

One of the main advantages of the ray casting is that it
is flexible in the sense that many other techniques can be
integrated to improve the image quality or the performance
of the rendering.

To reduce the sampling artifacts a stochastic jittering (i.e.
random ray-start off-setting) is applied to the ray start position.
To reduce the filtering artifacts a fast GPU-Based tri-cubic
filtering [30], [31] and a GPU pre-filter for accurate tri-cubic
filtering [32] are used.

The performance of our volume rendering is optimized by
empty-space leaping the non-visible voxels. The volume is
subdivided into an octree. In order to detect empty space, each
block stores the minimum and maximum scalar values. The
visibility of each block can be determined after evaluation of
the transfer function [33]. If the block is considered invisible,
the step size of the ray is increased, otherwise, it is decreased.
Our approach also supports early ray termination, if the
opacity accumulated is greater than a threshold, and image
downscaling, when the volume size is not supported by the
graphics rendering.

The volume data consists in scalar values that represent
some spatially varying physical property. Transfer functions
can be applied on these scalar values to improve the user’s
visual perception and data interpretation of the volume. The
transfer functions map the values to colors in the RGB space.
In this work, pre-integrated transfer functions [34] are used
to capture the high frequencies introduced in the transfer
functions with low sampling rates.

The volume rendering integral presented in the Equation 1
does not account for illumination effects caused by external
light sources. Such illumination effects, however, add a great
deal of realism to the resulting images. This is specially
important in an AR environment, where this illumination effect
serves as an approximation of the illumination of the real
scene. To compute the local illumination, it is used Blinn-
Phong shading [35] with on the fly gradient computation by
central or forward differences on the GPU. Non-polygonal iso-
surface rendering is realized by first hit ray-casting. The local
illumination is included in the Equation 1 by extending the
emission coefficient q(s) = qea(s) + qil(s), where qea(s) is
the emission coefficient of the emission-absorption model and
qil(s) is the coefficient that adds the local illumination [27].

A. Integration into a MAR environment

After the volume rendering, we read the color frame buffer
of the volume and send it to a shader to blend it with the RGB



Fig. 2. Some of the visualization options. A) Direct volume rendering (DVR). B) DVR with pre-integrated transfer function. C) DVR with pre-integrated
transfer function and Blinn-Phong illumination. D) Non polygonal iso surface volume rendering.

data coming from the Kinect sensor. The blending is done by
the following linear interpolation:

Ifinal = β ∗ Ireal + (1− β) ∗ Imedical, (6)

where Ireal is the image captured by the sensor, Imedical is
the image corresponding to the medical volume, and Ifinal is
the resulting image. In our approach, β is 0.2.

Incorrect occlusion of virtual and real objects in an aug-
mented scene is one of the fundamental problems in AR. To
solve it we use the depth maps of the 3D reference object
reconstructed previously (reference) and the 3D object coming
from the sensor’s live stream (live). If the live object is in front
of the reference object, the volume is the occludee, otherwise,
it is the occluder (Figure 1-F).

Blending and occlusion are computed in a GLSL (OpenGL
Shading Language) fragment shader that process the color and
depth buffers, respectively, to do these operations.

V. RESULTS AND DISCUSSION

In this section we analyze the performance of the whole ap-
proach and the techniques employed at the volume rendering.

For all tests we used an Intel(R) Core(TM) i7-3770K CPU
@3.50GHz 8GB RAM and a NVIDIA GeForce GTX 660. We
used the open source C++ implementation of the KinectFusion
[36] released by the PCL project [37].

The medical dataset used is a CT volumetric data of a head
[38] of two different resolutions: 2563 and 5123. The reference
human face was reconstructed with the KinectFusion using a
grid with volume size of 70cmx70cmx140cm and resolutions
of 2563 and 5123.

We evaluate the performance of our approach in a scenario
where the patient’s head is augmented with a CT volumetric
dataset of a head. The use of a generic volume does not
affect our evaluation, as our main interest is to evaluate the
performance of the proposed approach in the context of a
medical MAR environment.

Figure 2 shows the volume rendered with different visual-
ization options. Figure 3 shows the influence of some tech-
niques to improve the image quality of the volume rendering.

In the first test, the time required for each step of our
approach was measured in a situation with the resolution of
the KinectFusion’s grid in 5123 and of the medical data in
2563. The goal of this test is to evaluate the performance for
each step individually.

Fig. 3. A volume rendering (left) with stochastic jittering (center) and tri-
cubic filtering (right). The stochastic jittering reduces the wood-grain artifacts
in the volume, however it is almost imperceptible in this scene. The tri-cubic
filtering smoothes the volume data, reducing the artifacts present in the volume
rendered with trilinear filtering.

In our preprocessing computation, the 3D reference model
reconstruction takes 23 ms per frame (43 FPS) and requires
less than 15 seconds to be completed. In the MAR live
tracking, the time measured for each step of our approach
can be seen in Figure 4. From there, we observe that the
application takes 21 ms per frame (47 FPS). As the Kinect
provides depth maps at 30 FPS, our approach can process
every input frame coming from the RGB-D sensor. Therefore,
we can conclude that it runs in real-time.

The vertex and normal map generation takes more time
compared to the original results obtained from the KinectFu-
sion implementation [39]. It occurs because our normal map
computation is based on the covariance matrix, which is a
method more expensive than the traditional construction by
the cross product between neighboring vertices used in the
original KinectFusion. As mentioned before, this normal map
computation produces more accurate normal maps [19].

The computation of the occlusion, which transfers the data
stored in the GPU to the CPU, converts the 3D reference object
and 3D object coming from the Kinect to the same coordinate
system and sends their depth maps to the shader, takes the
highest time in our approach. Meanwhile, our direct volume
rendering takes the lowest time.

The solution proposed in [8] was not included in the
measurement of the live tracking, because it does not occur
for every input frame. When used, it added 40 ms in the total
frame time. Moreover, we have observed that the user takes
less than 10 seconds to position and adjust the volume in the
scene.

In the second test, we evaluate the influence of the volume



Fig. 4. Performance results measured in average milliseconds for each step of
our approach. MG - Vertex and Normal Map Generation. LT - Live Tracking.
OCC - Occlusion. VR - Volume Rendering. Times were measured running
our approach with the KinectFusion’s grid in resolution 5123 and the medical
data in 2563.

dimensions on the overall performance of our approach. Our
approach never dropped below 29 FPS using the medical and
KinectFusion volumes of resolution 2563 or 5123 with DVR.
Therefore, we can use the maximum KinectFusion’s volume
size to generate a more accurate 3D reference model.

In the third test, the average processing time for various
volume rendering modes was measured. The performance
results can be seen in Figure 5. From the analysis on the
first test, if the volume rendering takes less than 10 ms the
application still runs in real-time. Considering that the typical
resolution of a head medical volume is 2563 [40], we can
conclude that our approach runs in 30 FPS once the volume
rendering mode which takes most time in this resolution
needs only 7 ms. However, with a volume of resolution 5123,
depending on which mode is chosen, we have a loss in the
performance of the application.

As described in Section IV, the volume is stored as a
discrete 3D texture. When the ray is casted into the volume,
it accesses the space between the discrete samples of the
volumetric data. In this case, the trilinear interpolation is used
to reconstruct a continuous representation of the volume based
on the eight closest neighbours samples of that space. This is
the most expensive operation in the volume rendering based
on ray casting as it requires eight memory access to perform
the interpolation. Based on this statement, it is possible to
evaluate the variation in performance of the different volume
rendering modes.

In the simplest DVR, the trilinear interpolation is performed
only once for each position of the ray casted. Therefore, this
is the rendering mode which takes the lowest processing time.
As consequence, it produces the simplest visual effects, which
can be seen in Figure 2-A.

In the non-polygonal iso surface rendering, the Blinn-Phong
shading is computed when the ray traverses a voxel with
isovalue greater than a threshold defined semi-automatically.
The normal vector for a given voxel is computed by the
normalization of the central differences of the neighbouring

voxels. This gradient estimation requires six trilinear interpo-
lations. However, as it is not computed for every voxel being
traversed, it does not increase significantly the computational
cost of the volume rendering. An example of non-polygonal
iso surface rendering can be seen in Figure 2-D.

In the DVR with pre-integrated transfer function, after the
trilinear interpolation of the voxel, the scalar value of the
previous and current voxel being traversed are used as a look-
up in a 2-D pre-integration table. This lookup is performed
with a bilinear interpolation. It increases the volume rendering
processing time to 15 ms per frame and decreases slightly the
performance of the application to 35 ms per frame (28 FPS).
As a result, we have a more pleasant visual of the volume. An
example of such effect can be seen in Figure 2-B.

In the DVR with transfer function and local illumination, for
every voxel being traversed, the transfer function is accessed
(with a bilinear interpolation) and the illumination is com-
puted (with six trilinear interpolations). These interpolations
decrease significantly the performance of the volume rendering
to 30 ms per frame and the application to 50 ms per frame
(20 FPS), which is not prohibitive, as the user can still interact
with the application with some delay. In the final result, the
illumination effects add realism to the resulting image. An
example can be seen in Figure 2-C.

In the test performed with a simple DVR and fast tri-
cubic filtering, for every voxel being traversed, eight trilinear
interpolations are computed to return one tricubic interpola-
tion. These interpolations decrease the performance similarly
to the situation of transfer function and local illumination.
The volume requires 30 ms per frame to be rendered and the
application requires 50 ms per frame (20 FPS). The influence
of the tri-cubic interpolation instead of the trilinear one can
be seen in Figure 3.

Fig. 5. Performance results measured in average milliseconds for various
volume rendering modes. DVR - Direct Volume Rendering. IsoS - Non-
Polygonal Iso Surface. TF - DVR + Transfer Function with Pre-Integration.
LI - DVR + Local Illumination via Blinn-Phong. TriCubic - Fast Tricubic
filtering. 256 - 2563 volume. 512 - 5123 volume.



VI. CONCLUSIONS AND FUTURE WORK

We have presented a marker-free augmented reality ap-
proach for on-patient volumetric medical data visualization.
We used the KinectFusion algorithm to reconstruct the pa-
tient’s head and a variant of the ICP algorithm in conjunction
with a face tracking solution to track it during the MAR. We
have tested and applied standard volume rendering techniques
to render volumes with good quality and shown that, with a
typical volume size, the proposed algorithm is capable to run
in real-time. In addition, our approach supports occlusion.

One of the current limitations of the proposed approach is
that it was not evaluated with a real patient, which would
enable us to validate our approach in terms of accuracy.
Thus, one of the next steps must be adapt the approach to
be used and evaluated in a surgical environment. Encouraged
by the field of illustrative volume rendering techniques, for
future work we intend to integrate into our approach methods
that separate the volume into focus and context regions in
order to improve the human perception of the scene. Another
possibility of improvement is on the visualization of the
medical volume onto the patient. One could use saliency
maps or video ghosting techniques to define dynamically the
contribution of each image into the final one. Also, fast global
illumination could be applied to improve the realism of the
volume rendering and the integration with the real scene.
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